If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+33n-7=0
a = 10; b = 33; c = -7;
Δ = b2-4ac
Δ = 332-4·10·(-7)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-37}{2*10}=\frac{-70}{20} =-3+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+37}{2*10}=\frac{4}{20} =1/5 $
| 3=g|-4-5 | | 16x=(500/10) | | 120=n360 | | r–8=14 | | X2+7x+12x=0 | | 95+y=112 | | 16x+20=4x+60 | | −2j+7=−12 | | 18+5v=11v | | -6×+4y=-10 | | p+42=164 | | 12.67+0.09h=13.17-0.14h | | 276=12q | | 2x^2-5=3x^2x+31 | | 4x-12-4=5x-25 | | 3(x+2)-4=3-4x | | 7(x−7)+36=7x−13 | | 3c+48+56=11c | | 5/1(3r-4)=5/2 | | -16x+4=-8 | | .1x+70=x | | 6/n-7=2/n+1 | | 6=2x-8;6 | | (1/4)^3n=16^2n+3 | | (n-4)12n=6 | | .1x-70=x | | (x-1)^(2/5)=4 | | 4x+B=180 | | 2/x+1=4 | | 90=100x^2+20x | | 6x+30x=20x+10 | | x=4/2-5=2x-2/3 |